
This is the author’s version of an IEEE-copyrighted article. The original publication appeared in IEEE Transactions on 
Geoscience and Remote Sensing, Vol. 50, No. 6, June 2012, pp. 2364-2379. The original publication is available at 
http://ieeexplore.ieee.org (Digital Object Identifier: 10.1109/TGRS.2011.2171974) 

  
Abstract—Tasks such as city modeling or urban planning 

require the registration, alignment, and comparison of multi-view 
and/or multi-temporal remote sensing data. ALS (airborne laser 
scanning) is one of the established techniques to deliver these 
data. Regrettably, direct georeferencing of ALS measurements 
usually leads to considerable displacements that limit connectivity 
and/or comparability of overlapping point clouds. Most reasons 
for this effect can be found in the impreciseness of the positioning 
and orientation sensors and their misalignment to the laser 
scanner. Typically, these sensors are comprised of a GNSS (global 
navigation satellite system) receiver and an IMU (inertial 
measurement unit). This paper presents a method for the 
automatic self-calibration of such ALS systems and the alignment 
of the acquired laser point clouds. Although applicable to classical 
nadir configurations, a novelty of our approach is the 
consideration of multiple data sets that were recorded with an 
oblique forward-looking full-waveform laser scanner. A 
combination of a region-growing approach with a RANSAC 
(random sample consensus) segmentation method is used to 
extract planar shapes. Matching objects in overlapping data sets 
are identified with regard to several geometric attributes. A new 
methodology is presented to transfer the planarity constraints 
into systems of linear equations to determine both the boresight 
parameters and the data alignment. In addition to system 
calibration and data registration, the presented workflow results 
in merged 3D point clouds that contain information concerning 
rooftops and all building facades. This database represents a solid 
basis and reference for applications such as change detection. 
 

Index Terms—Airborne laser scanning, boresight calibration, 
data alignment, registration, urban areas 
 

I. INTRODUCTION 

A. Problem description 
Airborne laser scanning (ALS) usually combines a LiDAR 
(light detection and ranging) device with high-precision 
navigational sensors mounted on an aircraft. Typically, an 
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IMU (inertial measurement unit) and a GNSS receiver (global 
navigation satellite system, e.g., GPS, the Global Positioning 
System) are operated synchronously with a LiDAR scanning 
mechanism. Range values are derived from measuring the 
time-of-flight of single laser pulses, and scanning is performed 
by one or more deflection mirrors in combination with the 
forward moving aircraft. The navigational sensors are used to 
obtain 3D points associated with the range measurements, 
resulting in a georeferenced point cloud of the terrain. A good 
overview and thorough description of ALS principles can be 
found in [1].  

Currently available laser scanners are capable of acquiring 
the full waveform of reflected pulses, thus enabling new 
methods of data analysis [2]-[4]. Multiple range values can be 
obtained if echoes are received from different objects within 
the laser footprint. Additional attributes such as echo width 
and amplitude can be derived from waveform analysis to 
support the classification of objects. A well-established 
application of ALS data acquired in urban areas is the 
generation of 3D city models. However, the overall quality of 
the derived city model depends greatly on the accuracy of the 
data input, which is directly dependent on the precision of the 
navigational information. In this context, the use of one or 
more GNSS ground reference stations is required, as is the 
global optimization of the GNSS/IMU trajectory data [5]. 

During ALS data acquisition, laser range measurements are 
transferred to geographic coordinates with regard to current 
position/orientation of the laser scanner and the angle of the 
deflection mirrors. This process is usually referred to as direct 
georeferencing. Despite careful and accurate assembling of the 
sensor system, direct georeferencing commonly results in 
considerable displacements between overlapping strips. 
Sources of errors can be found, for instance, in the accuracy of 
the GNSS data, the sensor synchronization, or the control of 
the scanning mirrors. In this paper, we focus mainly on the 
automatic determination of the system’s boresight parameters, 
i.e., the alignment of the laser scanner to the navigational 
sensors. In addition to system calibration, we minimize 
remaining displacements by an object-based registration of 
overlapping parts of the ALS data sets. 

Airborne laser scanning for geodetic applications is usually 
accomplished in the nadir view. This configuration reduces 
occlusions when scanning bare earth or roof landscapes in 
urban areas, but it leads to missing structures in the data, e.g., 
facades of buildings and areas under bridges or roofed 
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shelters. These data can be complemented, e.g., by the use of 
terrestrial laser scanning (TLS). An alternative to close the gap 
between missing structures in classical nadir data and 
terrestrial data is to capture the scene with an oblique-looking 
airborne sensor. Obviously, this approach requires criss-
crossing flight lines instead of a classical parallel pattern. As 
an advantage, merging of all views results in a point cloud that 
contains information concerning all facades of buildings. In 
addition to 3D city modeling, such point clouds provide an 
ideal basis for change detection in urban areas. Moreover, an 
oblique forward-looking ALS configuration and real-time data 
analysis are ideally suited to support helicopter pilots during 
their missions, e.g., with obstacle warnings and terrain-
referenced navigation. Similar to multi-aspect data acquisition, 
multi-temporal comparison also requires the best possible data 
registration and fitting accuracy. 

B. Related work 
In the last two decades, registration of point clouds and 

calibration of airborne laser scanning systems have been 
explored by various scientists. These two topics are inherently 
different. On one hand, considering only the alignment of 
given point clouds ignores the circumstances of data 
acquisition and tries to optimize the data in itself. On the other 
hand, ALS calibration aims at the optimization of the sensor 
parameters such that the overall accuracy of fit is implicitly 
improved. In this paper, we address the calibration of such 
ALS systems that allow access to the component’s raw 
measurements (e.g., the GNSS/IMU trajectory). Another group 
of registration methods can be found in literature that attempt 
to recover and adjust the settings even in cases where this 
information is missing. 

Some procedures described in this paper are concerned with 
the segmentation of point clouds into planar surfaces. Many 
different methods regarding this topic can be found in the 
literature. In addition, some authors are also interested in 
detecting spheres, cylinders, or cones. Rabbani et al. described 
two methods for the registration of point clouds where they 
fitted models to the data by analyzing least-squares quality 
measures [6]. Vosselman et al. used a 3D Hough transform to 
recognize structures in point clouds [7]. The RANSAC 
algorithm [8] offers several advantages to exploit for point-
cloud shape detection [9]. Similar to Sampath and Shan [10], 
we begin our approach with a local principal component 
analysis [11]. After that, we apply an iterative combination of 
a RANSAC-based robust estimation technique with a region 
growing approach to identify planar patches in the point cloud 
data. The number of outliers allows us to distinguish between 
buildings and irregularly-shaped objects such as trees. 

Different measures of data quality have been proposed to 
evaluate the accuracy of (overlapping) ALS point clouds. As 
the precision of dynamic ALS data acquisition is affected by 
many influencing factors, most quality criteria directly 
originate in the data. Maas, for instance, implemented a least-
squares matching on a TIN structure to determine strip 
discrepancies [12]. Ressl et al. first interpolated a DEM 
(digital elevation model) for each strip. After that, attributes 
derived from the difference of these DEMs act as a quality 
measure for the given ALS data [13]. Vosselman used 

automatically extracted ridge lines of buildings to analyze the 
planimetric accuracy of ALS point clouds acquired in urban 
areas [14]. Kager used distances between homologous planar 
objects to evaluate the accuracy of ALS data [15]. Habib et al. 
even detected systematic errors by analyzing consistent 
incompatibilities between conjugate surface elements [16]. 
Similar to Soudarissanane et al. [17], we assess point-to-
surface distances in overlapping parts of point clouds, taking 
into account that the computation of local normal directions is 
part of our workflow. 

Since Besl and McKay proposed their iterative-closest-point 
(ICP) algorithm [18], this approach has become the standard 
solution to the point-set registration problem. During an ICP 
operation, a data shape D is moved iteratively to be in best 
alignment with a model M. In particular, a translation and a 
rotation are identified to move the data points towards the 
closest model points in a way that the average Euclidean 
distance is minimized. This problem can be solved explicitly, 
and it has been shown by Besl and McKay that the iterative 
procedure converges to a local minimum of the error function. 
Many different attempts have been made to improve the 
classical ICP algorithm [19]. A comparison of several variants 
has been given by Rusinkiewicz and Levoy [20]. In the context 
of ALS data correction, the main disadvantages of ICP-based 
registration methods are as follows: (1) the absolute accuracy 
remains vague because one data set is kept unchanged and all 
other point clouds are drawn on it, and (2) the application of 
the ICP algorithm presumes a rigid transformation to be 
sufficient to solve the registration problem. Actually, this 
assumption is incorrect for a misadjusted ALS sensor system. 

In adverse cases, existing 3D point clouds are nonlinearly 
distorted by calibration errors, but parameters of direct 
georeferencing have not been stored. Methods to improve data 
quality in such situations have been proposed by Ressl et al. 
[21] and Habib et al. [22]. If laser range measurements, 
scanning parameters, and the GNSS/IMU trajectory are 
available, such as in our case, these data can be exploited to 
determine the ALS mounting errors [23]. Skaloud and Lichti 
approached this problem with a rigorous method to estimate 
the system calibration parameters such that 3D points 
representing a plane are conditioned to show best possible 
planarity [24]. Their boresight calibration method is applicable 
to single strips, requiring manual selection of surfaces with 
known characteristics in the data. An extension of this method 
to multiple flight lines in urban terrain is described in [25]. 
The automated detection of roofs within a reference strip is 
followed by a local search for corresponding objects in 
overlapping parts of the other strips. Planar features are also 
commonly used in software for automatic strip adjustment and 
ALS calibration that is provided by laser scanner 
manufacturers, e.g., RiProcess (Riegl), Attune (Leica), or LMS 
(Optech). Friess has published a rigorous method that 
represents these industry-driven developments [26]; however, 
other publications of this branch can rarely be found. 

C. Our contribution 
The majority of related work is focused on ALS campaigns 

that are organized in parallel flight lines for area-wide airborne 
surveying (strip adjustment). Typically, it is assumed that the 
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laser scanner is operated in the nadir view on a fixed-wing 
aircraft. This kind of ALS measurements follows a standard 
procedure that can be thoroughly planned ahead of each 
survey, including the ability to prepare a network of ground-
based GNSS reference stations [5]. 

Commercial ALS systems that are used for airborne 
surveying are typically calibrated based on data that are 
captured at certain calibration sites. Usually, these calibration 
sites include a number of known objects and ground control 
points. In contrast, our workflow allows ALS calibration at 
arbitrary, previously unknown urban terrain, without any need 
to prepare or arrange special calibration objects. 

The experiments described in Section IV consisted of 
applying the proposed procedures to recorded raw data in a 
post-processing mode. Up to now, our experimental ALS 
system has not allowed immediate data access. However, we 
expect that the proposed methods can be accomplished in real-
time on an operational system. The work shown here 
especially addresses support for short-term operations, such as 
the surveillance of urban areas [27], terrain-referenced 
navigation [28], or rapid change detection [29]. Examples can 
be found in assistance systems for helicopter pilots, obstacle 
avoidance, landing operations in urban terrain, search and 
rescue missions (SAR), emergency services, or disaster 
management. These applications lead to different requirements 
for ALS data acquisition. Consequently, the described 
methodology of data analysis adapts to extended boundary 
conditions: 

 --An oblique forward-looking ALS sensor is used instead 
of (or in addition to) the classical nadir configuration. 

 --Although optimal conditions are assumed when 
calibrating the ALS system, it is possible to run into GNSS 
problems during the actual helicopter mission, for instance, the 
SPS mode (Standard Positioning Service), adverse satellite 
constellation, or loss of GNSS signals. 

Even though the proposed workflow adopts some ideas 
presented in related work (calibration based on identification 
and matching of planar features), it differs in detail as it 
applies to these altered circumstances. For instance, strong 
emphasis is put on segmentation methods that are suited to the 
conditions of oblique data acquisition. Moreover, the 
segmentation results are reusable to support subsequent 
applications such as change detection. Attributes that are 
mostly invariant to point distribution and density are derived 
from principal component analysis, e.g., area, centroid, 
orientation, and moments of inertia. These attributes are 
evaluated to associate planar shapes found in different 
overlapping data sets. Pairs of homologous planes are first 
used to estimate the system’s boresight parameters. Remaining 
discrepancies between the corrected point clouds are then 
attenuated by a data-based registration of corresponding 
surfaces. In both cases, a new method to transfer the planarity 
constraints into systems of linear equations is presented. The 
following statements outline our contribution: 

 --The proposed registration and calibration methods are 
based on attributes that are unaffected by varying point 
density, as it is encountered due to oblique view and altering 
directions of flight. 

 --The approach presented in this work uses a new and 
efficient method to exploit planarity constraints. It is not 
limited to a specific scanning principle and can be applied to a 
large variety of laser scanners and other (future) 3D sensors. 

 --The proposed rigid-body registration method is reliable 
even in case of considerable offsets (e.g., those caused by 
GNSS dropouts). 

 --No special calibration arrangement is required to 
determine the ALS boresight correction. Consideration of 
rooftops and facades in overlapping point clouds results in 
sufficient statistical variation of planar features. 

--Tests were successfully performed for widely different 
types of urban areas (e.g., large cities, suburban terrain, and 
small villages). 

--The methods are feasible to be used for in-flight 
calibration on an operational system. 

 --Attributes used during the calibration and registration 
process can be further exploited to support object-based 
change detection. 

The paper is organized as follows. Section II describes the 
components that are commonly used for ALS data acquisition, 
the principles of airborne laser scanning, and typical problems 
occurring in direct georeferencing. All necessary processing 
methods are presented in Section III. We start with a summary 
of common issues in handling of irregularly distributed point 
clouds. Then, a RANSAC-based shape extraction method is 
described. After feature extraction and matching of 
homologous surfaces, we derive the boresight calibration 
parameters of the sensor system. We then provide an accurate 
alignment of the corrected ALS data sets. A description of our 
ALS setup and experimental results can be found in Section 
IV. Finally, Section V presents a brief discussion and our 
conclusions. 

II. PRINCIPLES OF AIRBORNE LASER SCANNING 
Typically mounted tightly on an aircraft, an ALS system 

comprises a laser scanning device and an inertial navigation 
system together with a GNSS receiver. Reference data of 
several base stations are normally used to achieve the best 
possible accuracy when measuring the aircraft’s absolute 
position, either in real-time (RTK, Real-Time Kinematic) or 
during post-processing (PPK, Post-Processed Kinematic). 
Synchronously, the inertial navigation system measures the 
aircraft’s pitch, roll, and heading angles. The laser scanner is 
the core element of the ALS system. It generates and deflects 
single laser pulses, for which it measures the time-of-flight to 
receive an echo caused by one or more objects within the laser 
footprint. Taking the speed of light into consideration, the 
system is able to determine the distance between the aircraft 
and the reflecting object. Knowing the aircraft’s position and 
orientation as well as the scanning geometry, the absolute 
position of the point illuminated by the laser pulse can be 
determined. Fig. 1 illustrates our configuration, which can be 
considered as a typical ALS setup, despite the fact that we 
mostly used an oblique forward-looking laser scanner 
(30°≤ φ≤ 60°). A detailed description of our specific ALS 
system can be found in Section IV.A, or more thoroughly in 
[30]. 
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Fig. 1.  Exemplary ALS sensor carrier and configuration: laser scanner, GNSS 
receiver, and IMU installed on a helicopter (specific lever arms). 
 

A. Direct georeferencing 
Because the ALS system consists of several spatially 

separated parts, the mutual placement and alignment of these 
elements is of great importance when combining the 
complementary information of all components. Generally, the 
lever arms (dLiDAR, dGNSS) of the laser scanner, GNSS receiver 
and IMU can be determined with sufficient accuracy once the 
system is assembled, where “sufficient” means that remaining 
errors are negligible compared to other influences. While 
metering the aircraft’s position and orientation, the lever arms 
are taken into account to transfer positional coordinates to the 
laser scanner’s center. These calculations are usually done 
within the control unit of the navigational sensor system, 
which uses a Kalman filter to fuse the GNSS and IMU 
channels. The laser scanner itself makes use of the time-of-
flight distance measurement principle, for example, by 
estimating the range ρL corresponding to the first echo pulse 
found by constant fraction discrimination or full waveform 
analysis. Typically, opto-mechanical beam scanning provides a 
specific scan pattern, in which the distance ρL(t) measured at 
time t is georeferenced according to the scanning geometry as 
well as the position and orientation of the sensor. With the 
navigational information pN and RN relating to the laser 
scanner’s center (according to the lever arms), ρL(t) is directly 
georeferenced in the following way1: 

 
( ) ( ) ( ) ( ) ( )L N N S Lt t R t R t t= +  p p r . (1) 

 
Equation (1) is given with the following notations: 
 pN(t): the 3D position of the laser scanner at time t in a 

Cartesian geographic coordinate system, e.g., UTM (Universal 
Transverse Mercator) coordinates. 

 rL(t): the distance measured by the laser scanner, given as 
a Euclidean vector (0, 0, ρL(t))T. 

 RS(t): a 3×3 rotation matrix that describes the relative 
orientation of the scanning mechanism and the scanning 
process, i.e., the current direction of laser pulse emission. 

 RN(t): a 3×3 rotation matrix that describes the orientation 
 

1Throughout this paper, the symbol ◦ denotes the standard matrix 
multiplication, whereas ∙ represents the vector dot product. 

of the laser scanner in 3D space. 
 pL(t): the geocoordinates of the resulting “laser point”. 
The aggregated points pL(t) acquired within a time interval 

[t1, t2] are usually called a “LiDAR point cloud” or, more 
specifically, a “LiDAR strip” (in the case of a straight line 
flight trajectory). 

B. Sources of errors 
Direct georeferencing of laser range measurements provides 

a data acquisition method that is appropriate for airborne 
surveying (e.g., of urban areas). However, the accuracy of the 
derived 3D point clouds is affected by several influencing 
factors, reflecting the complexity of the ALS system. In 
addition to the varying exactness of the navigational 
information sources, several systematic effects can lead to 
reduced point positioning accuracy. Exemplary limiting factors 
are the scanning precision and range resolution of the specific 
laser scanning device. Other negative effects can be introduced 
by inaccurate synchronization of the system components. 
Significant offsets are caused by mounting errors or 
disregarded lever arms (displacements between laser scanner, 
IMU, and GNSS antenna). Potential error sources have been 
investigated by Schenk [31] and Filin [32]. With regard to 
specifications of the components in our ALS system, the 
contribution of each error source to the point positioning error 
in a distance of 500 meters is listed in Table I. 

 
TABLE I 

OVERVIEW OF ERROR SOURCES 

error source point positioning error 
in a distance of 500 m 

geodetic datum conversion <1 cm 

GNSS related errors (PPK or RTK) 3-30 cm 

IMU related errors (angular accuracy) 10-20 cm 

synchronization/interpolation 3-5 cm 

ranging accuracy 
(full-waveform scanner) 2-3 cm 

footprint size 10-20 cm 

scanning performance 3-5 cm 

lever arms 2-3 cm 

boresight misalignment >100 cm 
 

C. Boresight alignment 
A few of the potential errors listed in Table I are responsible 

for white noise, which stochastically affects the point 
positioning accuracy. The majority of influences will cause 
systematic shifts and nonlinear distortions of the resulting 
point clouds. Among these systematic errors, the IMU/laser 
misalignment usually has the highest impact on the overall 
precision. Unlike their relative position, the exact relative 
orientation of the IMU and the laser scanner cannot be 
determined directly with the necessary precision. Generally, it 
is recommended to rigidly mount both devices to avoid 
changes in the boresight alignment due to vibrations or 
temperature effects. Anyhow, even in case of rigid mounting, 
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the initial boresight misalignment is typically of the order of 
some tenths of an angular degree. This misalignment 
corresponds to point positioning errors of several meters in a 
distance of 500 meters. The alignment of both components will 
change each time the system is reassembled, unless the IMU is 
a built-in part of the laser scanner. 

Contrary to all other influencing factors, the boresight 
misalignment cannot be corrected properly in an independent 
way. Instead, the relative orientation of the IMU and the laser 
scanner must be taken into consideration during direct 
georeferencing: 

 
( ) ( ) ( ) ( ) ( )L N N B S Lt t R t R R t t= +   p p r . (2) 

 
As mentioned before, the IMU/laser alignment is typically 

incorrect by some tenths of an angular degree. We account for 
this by introducing a rotation matrix RB in (1). In Section III, 
we outline a workflow to determine RB automatically while 
acquiring multi-aspect ALS data of an urban terrain. 

III. STRATEGY FOR DATA PROCESSING 
A reasonable approach to estimate RB in (2) could start with 

an identification of homologous points pL(t1) and pL(t2) in 
overlapping parts of the point clouds. With regard to (2), we 
would then be able to determine the proper boresight 
alignment that minimizes the Euclidean distance for all such 
point pairs. Unfortunately, due to irregular sampling, it is 
unrealistic to expect the occurrence of such homologous 
points. A similar problem also arises in ICP methods, where it 
is solved, for instance, by examining point-to-(tangent) plane 
instead of point-to-point distances [20]. 

We adapt this idea to recover the boresight angles and, at 
the same time, we take into account that we analyze the data of 
an urban area. Data points that are most likely to result in 
correct point-to-plane assignments are those collected at man-
made objects, such as facades and the rooftops of buildings. 
Consequently, we apply filtering techniques to detect points 
that represent such objects and distinguish them from others 
(e.g., vegetation). Moreover, we exclude the ground level 
because this widespread subset of points would otherwise slow 
down the segmentation of proper localized planar surfaces. 
Following plane fitting, we match several attributes derived 
from planar shapes to find correct plane-to-plane 
correspondences. Finally, RB is determined on the basis of data 
points associated with these homologous planar surfaces. 

A. Data structures 
An adequate data structure is needed to store, query, and 

analyze three-dimensional point clouds. ALS data sets 
typically consist of up to several millions or billions of 
irregularly distributed 3D points, for which it is important to 
have an appropriate indexing. Otherwise, even simple queries 
would require traversing of the entire point cloud. Different 
methods of efficient 3D data handling can be found in 
literature. Conveniently, a digital surface model (DSM) is 
generated by sampling the 3D points onto a 2D grid. Data sets 
handled this way are usually referred to as 2.5D data. These 
data can be examined using image processing methods. 

However, a simple 2D rasterization is an improper data 
structure when dealing with full 3D point clouds, e.g., those 
originating from multi-aspect ALS scans. For instance, points 
measured at the facades of buildings are suppressed when 
these data are assigned to horizontal raster cells. 

Octrees and k-d trees [33] are widely used in computer 
graphics and geometric modeling. These data structures are 
well-suited for indexing of large point sets and other spatial 
data. The volume containing the entire point cloud is 
recursively divided into subspaces by introducing splitting 
planes perpendicular to the coordinate axes. The recursive 
refinement of this mesh can be represented by a tree-like 
hierarchical decomposition. When implementing an octree, 
fixed octants are utilized for space partitioning. In contrast, a 
k-d tree uses splitting planes, which are adaptive to varying 
point density. After arranging the data in this way, search 
operations can be performed very efficiently by using the tree 
properties to quickly eliminate large portions of the search 
space. We use k-d tree data structures (k=3) for most of the 
search operations and data processing methods that are 
described in the next sections. In addition to the Cartesian 
coordinates pL of each laser point, attributes such as echo 
width and amplitude are associated with elements of the point 
cloud. Moreover, each point’s origin is stored, i.e., its 
timestamp t, the measured range rL, and the scanning geometry 
RS. Sensor positions and orientations pN(t) and RN(t) are 
interpolated from the synchronously recorded GNSS/IMU 
information, which is typically captured with a frequency 
lower than the pulse repetition rate. 

B. Local principal component analysis (PCA) 
In the context of airborne laser scanning, data processing 

methods usually aim at the filtering and clustering of complex 
point clouds, the classification of points, as well as the 
segmentation of objects and structures. Extracting features in 
the local neighborhood of each element is a good starting point 
for further analysis. Hoppe et al. demonstrated the practical 
usability of covariance analysis to estimate local properties of 
point-sampled surfaces [11]. Let pi denote a given 3D point in 
the point cloud P. Its neighboring points pij can be found 
efficiently by traversing the k-d tree of P and identifying all 
points that fall below a predefined distance r to pi. The radius r 
of the bounding sphere is chosen globally according to the 
average point density so that these vicinities are likely to 
contain a significant number of points. When analyzing ALS 
point clouds, values assigned to r typically lie between 0.5 and 
5 meters. With a quantity n of neighboring points, pi0=pi, and 
p̄ being the centroid of Pi={pi0, pi1, …, pin}, the covariance 
matrix C is given by the following expression: 

 
( ) ( )T

0 0, , , ,i in i inC = − − − −p p p p p p p p  

. (3) 
 

The 3×3 covariance matrix C is symmetric and positive 
semi-definite; therefore, its eigenvalues λ1, λ2, and λ3 are real-
valued, non-negative numbers. The eigenvectors v1, v2, and v3 
of C are the principal axes of Pi. Each eigenvalue λk, divided 
by the number of points (n+1), gives a normalized measure of 
the scatter in direction of the respective eigenvector vk. The 
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result of covariance analysis can be interpreted as an ellipsoid 
of inertia, which is given by the orthogonal vectors λ1v1, λ2v2, 
and λ3v3. The eigenvalues of C are commonly indexed in such 
a way that λ1≤ λ2≤ λ3. If λ1 is near zero, and it is significantly 
smaller than λ2 and λ3, it indicates a locally planar region, and 
v1 represents a good approximation of the surface normal. We 
perform these computations for every point pi in P. In each 
case where we can find enough neighboring points and the 
eigenvalues reveal local planarity, the normal direction ni=v1 
or ni=-v1 is assigned to point pi and we state that pi is of class 
A. Otherwise, pi is assigned to class B. To guarantee consistent 
normal directions, the orientation of ni is chosen to satisfy 
(RN ◦RS◦rL)·ni≤ 0. Remarkably, local PCA is not sufficient to 
identify continuous planar surfaces, and points acquired at 
smooth non-planar surfaces are also assigned to class A. This 
identification is handled in the next two sections.    

C. Region growing 
It is often desirable to identify coherent regions within the 

point cloud data. The basic idea of region-based segmentation 
is to expand a point set that is initialized with a single point qi. 
Starting from this seed point, a measure of similarity d(qi,qk) is 
evaluated for all neighboring points qk within a bounding 
volume around qi. Depending on the search criteria, similarity 
is typically defined by attributes such as the echo amplitude, 
height above ground, or normal direction. Points qk are added 
to the region if d(qi,qk) falls below a certain threshold dmax, 
which indicates that these points have similar attributes. This 
procedure is repeated recursively with all new points in the 
increasing region, until no more additional points are found. 
Several parameters have substantial influences on the result of 
region growing: 

 --the seed point qi is either selected manually or found by 
an automatic procedure, 

 --the threshold dmax is chosen locally or globally, 
 --the measure of similarity d must be carefully set to push 

the region growing into the right direction, which ends up in 
the requested results. The measure d is evaluated either locally 
or by comparing to the original seed point. 

In our workflow, we include a region growing technique 
with the aim of ground level segmentation. To find appropriate 
seed points automatically, sections of the point clouds are 
identified in which the histogram of height values clearly 
shows a multimodal distribution. There, laser points at ground 
level appear as the lowest distinct peak. Starting from such 
locations, we locally collect low-lying points that fall below a 
certain slope, and we assign these points to class G. This way, 
some outliers in the point cloud (e.g., those caused by multiple 
reflections) are treated as ground level, but these outliers do 
not affect the result as we use multiple seed points. In this 
example, the local measure of similarity is given by the 
following: 

 
( ) ( )height height

( , ) k j
j k

j k

d
−

=
−

p p
p p

p p
. (4) 

 
An exemplary threshold would be dmax=0.25. The necessary 

search operations are accomplished by means of the k-d tree 
data structure. In general, this method may misclassify some 
points (e.g., inner courtyards), but this misclassification is 
negligible for our application. An overview of advanced 
methods for bare-earth extraction can be found in [34]. 

D. RANSAC-based detection of planar shapes 
The random-sample-consensus (RANSAC) paradigm as 

described by Fischler and Bolles is a standard technique to 
estimate parameters of a mathematical model underlying a set 
of observed data [8]. It is particularly used in cases where the 
observed data contain data points that can be explained by a 
set of model parameters (inliers) and data points that do not fit 
the model (outliers). To apply the RANSAC scheme, a 
procedural method has to be available that determines the 
model parameters based on a minimal subset of the data. 

Schnabel et al. have demonstrated the efficiency of 
RANSAC techniques to extract shapes in unorganized point 
clouds [9]. In our approach, we utilize this robust parameter 
estimation to identify planar regions in the ALS data. If we 
have a set S of points {p1,…,pn} and we assume that this set 
mostly contains points that approximately lie on one plane 
(inliers) and some others that do not (outliers), simple least-
squares model fitting would lead to poor results because the 
outliers would affect the estimated parameters. However, 
several robust techniques other than RANSAC are available 
for robust regression in such situations, e.g., iteratively 
reweighted least squares (IRLS). Instead of using weighting 
factors, RANSAC estimates a plane by taking only the inliers 
into account, provided that the probability of choosing only 
inliers among the data points is sufficiently high. To compute a 
plane, we select a random sample of three non-collinear points 
(the minimal subset) pi, pj, and pk. The resultant plane’s normal 
vector n0 is computed as n=(pi –pj)×(pi –pk), n0=n/||n||, and 
with (x – pi)·n0=0, the plane’s Hessian normal form is 
obtained. Using this representation, we can evaluate whether 
other points p in S  are inliers or outliers simply by computing 
the distance |(p–pi)·n0| to the previously obtained plane. If this 
distance falls below a pre-defined threshold, we assess that 
point as inlier. The number of inliers and the average distance 
of all inliers to the plane are used to evaluate the quality of the 
fitted plane. This procedure is repeated several times to 
converge towards the best fitting plane. 

 
Application to ALS data of urban terrain 

In this subsection, we propose a method for automatic ALS 
point cloud analysis that is an iterative combination of 
RANSAC plane fitting and point-specific region growing. The 
procedure is intended to detect planar objects, such as parts of 
buildings, and separate these from clutter objects, such as 
bushes or trees. A complete overview of the algorithm is 
shown in Table II. During initialization, overlapping point 
clouds (e.g., multi-aspect or multi-temporal data) are cropped 
to tiles that contain the urban area of interest (overlap area). 
For each such tile, a separate k-d tree is generated, the ground 
level is segmented, and local principal components are 
computed. Details of these steps {1}-{3} are described in the 
previous sections. 
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TABLE II 

ALGORITHM: DETECTION OF PLANAR SHAPES 

{1} Generate a k-d tree data structure to handle search 
operations in the point cloud P (see Section III.A). 

{2} Perform a local principal component analysis at each point 
pk in P. Depending on the results, pk is either assigned to 
class A or class B (see Section III.B). Points of class A 
obtain a normal direction nk. 

{3} Filter out (most of the) points at ground level (see Section 
III.C). Let PnG denote the set of remaining non-ground 
points. 

ou
te

r l
oo

p 

{4} Choose an unprocessed point pi of class A among the 
data points in PnG. 

{5} Check a sphere of radius r around pi for adjacent 
points of class A. Include these in a new set S if their 
associated normal direction is similar to that of pi. 

{6} Set the inner loop counter m to zero. 

in
ne

r l
oo

p 

{7} If S contains more than a specific number of 
points, increase the counter m by one. Otherwise 
mark point pi as discarded and go to step {17}. 

{8} Perform a RANSAC-based plane fitting to the 3D 
points in the specified set S (see Section III.D). 

{9} If the number of inliers is low, mark pi as 
discarded and go to step {17}. 

{10} Fit a plane to the inliers in a least squares sense 
and obtain the plane’s Hessian normal form 
E:(x–p)·n0=0 

{11} Push pi on a stack (“last in, first out” data 
structure). 

re
gi

on
 g

ro
w

in
g 

{12} Pop the first element pj off the stack. 
{13} Check each point pk in a sphere of radius r 

around pj, which has not already been looked 
at, whether it lies sufficiently near to the 
plane E, meaning that d( pk )=|( pk – p)·n0|≤ ε. 
If so, include the point pk in a new set S‘. If 
additionally pk is of class A and |n0·nk|≈1 
indicates a match of normal directions, push 
pk on the stack. 

{14} While the stack is not empty, go to {12}. 
Otherwise continue with step {15}. 

{15} If the counter m has reached its predefined 
maximum (e.g. three cycles), mark all points in S‘ 
as processed, extract features of this planar region 
(see Section III.E) and go to step {17}. Otherwise 
continue with {16}. 

{16} Go to step {7} with the new set of points S:= S‘. 

{17} Repeat from {4} until all selectable points are 
processed. 

 
The algorithm successively fits planes to the data points, 

wherever this is possible. In each run of the outer loop, we 
select an unprocessed point of class A in the point cloud P. A 
planar shape is likely to be found at such a location. In the 
following steps, we try to fit a plane to the neighboring data 
points at that position. The RANSAC technique provides a 

robust estimation of the plane parameters, together with an 
automatic evaluation of the quality (e.g., number of inliers). If 
the fitted plane is of poor quality, we assess the data associated 
with the current location as clutter. Otherwise, we try to 
optimize the plane fitting by looking for all data points that 
support the obtained plane. The underlying operation is 
accomplished in steps {12}, {13}, and {14}, which represent a 
region growing algorithm. During region growing, points of 
classes A and B are treated in different ways. Only points of 
class A are able to expedite the region growing, if their 
positions and associated normal directions (from principal 
component analysis) are consistent with the plane parameters. 
This condition avoids jumps across different planar regions. In 
the inner loop, local plane fitting and region growing are 
repeated (e.g., two times) using all the supporting points to get 
a more accurate result. A typical application is depicted in Fig. 
2. We use this algorithm to identify points that form the 
facades and rooftops in the ALS data of an urban area. 

 

pi

n0

points of class A in region
points of class B in region
points of class A not in region
points of class B not in region
points of class G (ground)

 
Fig. 2.  Extraction of planar shapes using RANSAC-based parameter 
estimation and point-specific region growing. 
 

E. Feature extraction and matching 
In the following sections, we distinguish between different 

situations that involve ALS data registration. In the first case, 
an ALS database of the urban area is built from scratch by 
operating the same airborne sensor system on overlapping 
flight lines with an oblique forward looking laser scanner 
(multi-aspect data, Subsection III.F.1). In the second case, we 
align current data to a reference, for example, for change 
detection (multi-temporal data, Subsection III.F.2). Both types 
of boundary conditions allow the determination of the 
boresight correction RB if errors related to GNSS positioning 
can be reduced to a minimum. This error reduction is achieved 
by applying the reference data from a network of ground-based 
GNSS stations (RTK or PPK). However, if a helicopter is 
equipped with a calibrated ALS sensor system, 3D laser data 
can be used to support the pilot, for example, by providing 
flight guidance, terrain-referenced navigation [28], or on-line 
change detection. In these scenarios, we expect low 
positioning accuracy (SPS) or even GNSS dropouts that lead 
to offsets of several meters, depending on the quality of the 
specific IMU in use. To handle these situations, we propose a 
rigid-body registration method that is reliable even in case of 
considerable offsets (Section III.G). In all these three cases, a 
robust matching technique is used, as explained in this section. 

To assign identical planar shapes across two different ALS 
point clouds or overlapping tiles of the same data set, we 
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derive several geometric attributes and evaluate distances of 
feature vectors. When applying the procedure described in 
Section III.D, clusters C of points {c1,…,cn} are found which 
represent planar shapes (e.g., the rooftop in Fig. 2). Similar to 
the attributes defined in Section III.B, the following attributes 
are used to characterize each cluster C: 

 --the centroid c̄ of C, which is the arithmetical average of 
all points in {c1,…,cn}, 

 --the normalized and sorted eigenvalues (λ 1,λ 2,λ 3) 
=(λ1,λ2,λ3)/n of the covariance matrix (C– c̄ )◦(C– c̄ )T, 

 -- the unit normal direction n0, which is the eigenvector v1 
corresponding to the smallest eigenvalue λ1. 

These descriptive attributes are computed in each point 
cloud and for every cluster of coplanar points. Given such a 
planar shape Ca in point cloud PA, we search for a matching 
counterpart Cb in data set PB. First, the displacement of the 
centroids has to fall below a maximum distance (e.g., 25 m). 
We limit search operations to this search radius after 
organizing the centroids into an efficient data structure (see 
Section III.A). Second, the angle between the normal 
directions should be small (e.g., smaller than 15°, meaning that 
|n0a·n0b|>0.966). Third, the normalized eigenvalues of the 
respective covariance matrices should be similar. With 
λ a=(λ a,1, λ a,2, λ a,3), we try to verify the following: 

 

1 1(e.g. 0.1),a b

a b

ε ε
−

≤ =
+

λ λ

λ λ
 (5) 

 

,2 ,2 ,3 ,3
2 2

,2 ,2 ,3 ,3

4 (e.g. 0.05).a b a b

b a b a

λ λ λ λ
ε ε

λ λ λ λ
+ + + − ≤ =  (6) 

 
Both equations describe distance measures to compare λa  

with λb. Equation (5) represents the Euclidean distance of 
these vectors in relation to an average of their magnitude. This 
normalization ensures that (5) is scale independent in terms of 
area size and measuring unit. In (6), we compare component-
by-component ratios of the nonzero components of λa  and λb. 
In the case of an equal shape of Ca and Cb, each such ratio of 
normalized eigenvalues is close to one, and therefore, (6) is 
close to zero. Additionally, (6) is not susceptible to small 
variations in shape because d(x+x-1) /dx=0 for x=1. Pairs of 
planes that comply with these conditions are considered 
homologous. However, wrong assignments may occur 
especially in case of considerable offsets and a large search 
radius. To be robust against these perturbations, the 
procedures described in the next sections are supplemented 
with a RANSAC scheme. Based on some tests with real sensor 
data, we estimated the typical number of inliers among all 
assignments in cases where only the centroids were compared 
(case A). In addition, the normal directions were evaluated 
(case B), and also (5) and (6) were considered (case C). For 
search radii of (5 m, 10 m, 50 m), we found the following 
percentage of inliers in case A: (92%, 50%, 6%), case B: 
(95%, 93%, 34%), case C: (95%, 95%, 80%). These numbers 
confirm that the necessity of the above feature assignment 
method mainly depends on the search radius. For instance, if 

discrepancies smaller than 5 m are expected, it is sufficient to 
match the centroids without considering other attributes. 
However, in Section III.G, we also address situations of low 
positioning accuracy (SPS) or GNSS dropouts. These 
situations require a notably larger search radius, and there, the 
proposed feature assignment has its rightful place. 

F. Boresight calibration 
As introduced in the previous section, we will first present 

ALS calibration methods that can be applied if high-precision 
GNSS data (RTK or PPK) are available. In this case, the 
absolute positioning of the sensor can be quite accurate (3-30 
cm) [35]. As opposed to an ICP method that aligns different 
point clouds directly by matching closest points, we use the 
results of plane segmentation to calibrate the boresight angles 
of the ALS system. In the case of criss-crossing (i.e., 
orthogonal and antiparallel) flight paths, discrepancies 
between overlapping data sets (multi-aspect, multi-temporal) 
are minimized by aligning homologous planar surfaces. This 
approach is mostly independent from discrete sampling and 
varying point density of the point clouds. The resulting 3D 
data are georeferenced to a global coordinate system. 

 

pa

Ca

n0a

d
 

Fig. 3.  Pair of homologous planar shapes Ca and Cb with representative 
points pa and pb. 

 
1) Multi-aspect ALS data acquired by the same sensor 

Again, Ca denotes a cluster of coplanar points in point cloud 
PA, and Cb refers to its corresponding planar shape in data set 
PB. Furthermore, let pa denote a data point representing Ca, 
and let pb denote an element of Cb (Fig. 3). Following the 
motivation presented in the introduction of Section III, we 
minimize the point-to-plane distance instead of the point-to-
point distance of pa and pb. The main advantage of the 
preceding filtering and segmentation of proper localized planar 
shapes is the option to choose almost arbitrary representative 
points pa and pb. Even random selections and combinations are 
feasible. However, it is not realistic to choose all possible pairs 
of points because this would lead to a huge number of 
equations. In (9), the point-to-plane distance is derived based 
on a normal vector that is estimated using the biased point 
coordinates. To keep the impact of slightly wrong normal 
directions small, we choose points pb in Cb with minimum 
Euclidean distance to given points pa. However, in 
experiments, we found that even choosing pairs pa and pb with 
maximum Euclidean distance had only marginal impact on the 
results. 

 Points pa and pb are recorded at time ta and tb, respectively. 
By using these indices, direct georeferencing of pa and pb with 
regard to (2) can be written as the following expressions: 

 
( ) ,
( ) .

a L a Na Na B Sa La

b L b Nb Nb B Sb Lb

t R R R
t R R R

= = +
= = +

  

  

p p p r
p p p r

 (7) 
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We abbreviate the measured range values including their 

associated scanning geometry as sLa=RSa◦rLa and sLb=RSb◦rLb. 
For any three-component vector v=(v1, v2, v3)T, let χ(v) denote 
the following skew-symmetric matrix: 

 

( )
3 2

3 1

2 1

0
0 .

0

v v
v v
v v

χ
− 

 = − 
 − 

v  (8) 

 
For two vectors v  and w, it is χ(v)◦w =v×w . As already 

mentioned, the boresight angles are typically incorrect by 
some tenths of an angular degree. Therefore, the boresight 
correction RB can be expressed in good approximation as 
RB=I3+χ(β), where I3 denotes the 3×3 identity matrix, and 
β=(β1, β2, β3)T are the three Euler angles of the rotation given 
in radians. This simplification linearizes (7) when solving for 
these angles. Once the boresight correction is taken into 
account during direct georeferencing, both point clusters Ca 
and Cb are expected to fall on the same place, and all related 
points should form a common planar shape. We can express 
this by claiming the following: 

 
( ) 0 ,a b a a b bd C C= − ⋅ = ∀ ∈ ∈p p n p p . (9) 

 
Therein, n=(n0a+n0b) / ||n0a+n0b|| is an average of the nearly 

identical normal vectors attributed to Ca and Cb, whereby we 
set the directions to fulfill n0a·n0b > 0. Together with (7), we 
get the following: 

 
( ) 0Na Na B La Nb Nb B LbR R R R+ − − ⋅ =   p s p s n . (10) 

 
Except for the three unknown boresight angles, 

measurements relating to all other parts of (10) are available. 
Thus, with RB=I3+χ(β), we can rearrange this linear equation 
to estimate β. From (10), we obtain the following: 

 
( )
( )3 3

( ) ( )

.
Na La Nb Lb

Nb Nb Lb Na Na La

R R

R I R I

χ χ− ⋅ =

+ − − ⋅

   

   

s s n

p s p s n 

β β  (11) 

 
Now we can transform the left side of this equation: 
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( ) ( ) ( ) ( )
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 (12) 

 
If we combine (11) and (12), we get the following: 
 

( )
( )

TT T( ) ( )

.
La Na Lb Nb

Nb Nb Lb Na Na La

R R

R R

χ χ− =
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s n s n

p s p s n 

β  (13) 

 
Equation (13) is of type F◦β=g so that elements pa and pb 

of homologous planar shapes Ca and Cb in overlapping point 
clouds PA and PB contribute a row to matrix (F, g). Typically, 
more than two overlapping point clouds are acquired. Pairwise 
matches of planar shapes across these tiles are accumulated in 
(F, g). For example, if a plane is contained in four overlapping 
data sets, it would allow six groups of matches to contribute to 
(F, g). The resulting over-determined linear system can be 
solved in a least-squares sense. To increase the robustness 
against wrong assignments, we supplement the solution 
process with a RANSAC scheme. In other words, we 
repeatedly select three random rows (Frand, grand) in the over-
determined system, derive β*=(Frand)-1◦grand as a preliminary 
solution, and evaluate the residuals |F◦β*–g| to identify inliers 
and outliers. After some iterations, we consider only the best 
set of inliers (Fin, gin). Additionally, weighting factors 
w=λ 2+λ 3 are used when inverting the normal equations, 
causing larger shapes to have a higher impact on the result. We 
obtain 

 

( ) 1T T
in in in inF W F F W

−
=      gβ  (14) 

 
with a diagonal matrix W containing the associated 

weighting factors w. Finally, the boresight correction RB is 
represented by the Euler angles (β1, β2, β3). 

 
2) Existing control surfaces 

In this subsection, we consider boresight calibration in the 
case of an existing reference (e.g., control surfaces). To allow 
for system calibration, we intend to align current ALS data to 
this reference. Again, we imply that precise GNSS data are 
available. The boundary conditions to determine the boresight 
alignment RB are slightly different from the initial situation we 
had before. 

Let Cd be a cluster of coplanar points in the newly acquired 
point cloud PD. Again, we exploit the attributes described in 
Section III.E to identify corresponding planar patches in the 
reference data set PM. Let Cm denote such a matching 
counterpart of Cd. Furthermore, let p̄m be the centroid of Cm, 
n0m the associated normal direction, and let pd denote an 
arbitrary element of Cd. The direct georeferencing of this point 
is expressed in the following way: 

 
( )d L d Nd Nd B Sd Ldt R R R= = +   p p p r . (15) 

 
When considering the boresight correction RB, all points that 

form the shape Cd are expected to be coplanar with Cm, which 
is stated by the following expression: 

 
( ) 0d m 0m d dC− ⋅ = ∀ ∈p p n p . (16) 

 
With sLd =RSd◦rLd, we combine these equations and get the 
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following: 
 

( ) 0Nd Nd B Ld m 0mR R+ − ⋅ = p s p n . (17) 
 
Similar to (12)-(13), we rewrite (17) to solve for the 

boresight angles β=(β1, β2, β3)T: 
 

( ) ( )TT( )Ld Nd 0m m Nd Nd Ld 0mR Rχ = − − ⋅   s n p p s nβ . (18) 

 
Analogous to our approach in the previous subsection, (18) 

is of type F◦β=g so that elements pd of Cd in point cloud PD 
contribute a row to matrix (F, g), if Cd is associated with a 
planar shape Cm in the reference data set PM. Again, we 
determine the Euler angles β1, β2, and β3 of RB by solving this 
system of linear equations with a RANSAC estimation 
technique, which is followed by a weighted least-squares 
minimization based on the inliers. 

G. Rigid-body alignment of multiple point clouds 
Apart from mismatches that are caused by an incorrect 

boresight alignment, other sources of errors may have 
significant influences on the fitting accuracy of multiple 
overlapping point clouds. In addition to high-quality ALS data 
acquisition, we address applications that require real-time data 
analysis under adverse GNSS conditions [28]. Typical 
examples can be found in airborne monitoring for law-
enforcement purposes, disaster management, and medical or 
other emergency services. Moreover, it is desirable to assist 
helicopter pilots with obstacle avoidance and aircraft guidance 
in case of poor visibility conditions, during landing operations, 
or in the event of GNSS dropouts. In such situations, 
comparison of current ALS scans to existing geo-referenced 
3D data could be used for terrain-referenced navigation or on-
line change detection. 

Despite the operation of a thoroughly calibrated ALS 
system, different laser point clouds still show discrepancies of 
some centimeters up to several meters, depending on the actual 
positioning accuracy of the GNSS subsystem. To resolve this 
problem, we perform a data-based registration of these data 
sets. Due to our preparatory work, we can draw on the results 
of plane segmentation to align 3D point clouds of urban 
terrain, rather than starting an ICP approach. Again, let Cd 
denote a cluster of coplanar points in the ALS data set PD, 
which is associated with a planar shape Cm in the reference 
point cloud or model PM. The Hessian normal form of the 
respective planes is given by the centroids p̄d, p̄m and the 
normal directions n0d, n0m. Fig. 4 illustrates exemplary pairs of 
corresponding surfaces. The offset in position and orientation 
indicates the inaccuracy of the navigational data. We 
determine a rigid transformation (R, t) to correct these 
discrepancies. Even in case of GNSS gaps, the relative 
exactness provided by the IMU ensures consistent ALS 
measurements over limited periods of time [35]. Thus, we can 
assume that errors of orientation would not exceed the range of 
±5°. This information allows us to approximate the rotation 
matrix as R=I3+χ(γ), with small Euler angles γ=(γ1, γ2, γ3)T. 
Because associated planes should coincide after the 

registration, p̄d is moved to have zero distance to the plane 
defined by Cm. Additionally, with both normal vectors 
normalized to the same half-space, n0d is rotated to be identical 
with n0m. We express this by means of the following two 
equations: 

 
( )
( )

0,

1.
d m 0m

0d 0m

R =

R =

+ − ⋅

⋅





p t p n

n n
 (19) 

 
The rotation angles γ=(γ1, γ2, γ3)T and the translation 

components t=(t1, t2, t3)T are the six unknowns to be 
determined. To solve for these variables, we rearrange (19) 
and find the following: 
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p n n t p p n
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γ

γ
 (20) 

 
Each corresponding pair of planar patches (Cd, Cm) yields 

two linear equations of type (20), therefore at least three pairs 
have to be identified in the data to compute the rigid 
transformation (R, t). In general, much more correspondences 
can be found in urban areas. These correspondences allow us 
to robustly estimate the rotation and translation parameters by 
a combination of a RANSAC scheme with a weighted least-
squares approximation, similar to the approach we used in 
Section III.F. Finally, R is set to a proper rotation matrix with 
the three Euler angles γ, and each point p in PD is transferred 
to pnew=R◦p+t. This transformation aligns PD to PM. 

 

pm

PD: ALS data
PM: reference/model

n0dn0m

Cm
Cd

pd

 
Fig. 4.  Exemplary pairs of homologous planes in point cloud PD and 
reference/model PM. 

IV. EXPERIMENTS 

A. Experimental setup and data acquisition 
As already mentioned, our current experimental ALS system 

lacks on-line data access. The experiments described in this 
section were conducted in a post-processing mode based on 
recorded raw data. However, we expect that an efficient 
implementation of the proposed methods can work in real-time 
on an operational system. 

The data that we analyzed during this study were collected 
in field campaigns in the years 2006-2009, using the 
equipment that is briefly described below. A thorough 
description of the sensor system can be found in [30]. All 
sensors were attached to a helicopter of type Bell UH-1D. Fig. 
1 shows details of the installation: the GNSS antenna is placed 
on top of the cockpit, whereas the laser scanner and IMU are 
mounted alongside on a common sensor carrier. This platform 
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can be tilted in the pitch direction to allow different 
perspectives, i.e., the nadir or oblique view (inclination angle 
φ). 

The RIEGL LMS-Q560 (2006) laser scanner uses the time-
of-flight distance measurement principle with a pulse 
repetition rate of 100 kHz. The laser pulses are deflected by a 
rotating polygon mirror perpendicular to the direction of flight, 
resulting in successive scan lines and continuous sampling of 
the underlying terrain by the forward-moving helicopter. 
Multiple range values rL under a scan angle α are identified 
based on a Gaussian decomposition of the full-waveform 
LiDAR information [3]. In our experiments, we used the 
sensor manufacturer’s RiANALYZE software to perform this 
step during off-line data processing. Furthermore, waveform 
analysis contributed the echo width and amplitude as 
additional attributes. With our configuration and settings, each 
scan line typically covered a field of view of 60° subdivided 
into 1000 angular steps ∆α. Besides raw data conversion, no 
other sensor specific software tools were used because we 
want to keep the presented workflow configurable, extendable, 
and adaptable to other types of laser scanners and new 3D 
sensors, which we intend to analyze in future studies. 

The Applanix POS AV 410 comprises a GNSS receiver 
(GPS) and the gyro-based inertial measurement unit (IMU), 
which is the main part of the inertial navigation system. The 
GNSS and IMU data are fused within the position and 
orientation computing system (PCS), delivering navigational 
information at a frequency of 200 Hz. Each time the 
inclination angle of the sensor platform in our ALS system was 
changed, the gimbal orientation (i.e., the GNSS/IMU lever 
arm) was measured automatically by a rotary position encoder. 
This parameter was forwarded to the PCS, and it was kept 
unchanged during and in good time before the actual ALS 
measurements, so the GNSS/IMU integration was able to 
adapt to each new setting. Moreover, the stability of the 
continuous GNSS/IMU integration was verified during post-
processing. In addition to the standard navigation solution 
(SPS, Coarse/Acquisition mode) we used specialized software 
for accurate post-processing of the recorded navigational raw 
data. Applanix POSPac MMS incorporates the use of multiple 
GNSS reference stations and the import of precise satellite 
ephemeris information. In our experiments, we obtained these 

additional data from the “Satellite Positioning Service of the 
German State Survey” (SAPOS). 

Some details about the field campaigns and the data 
acquisition are given in Table III. This list includes the exact 
coordinates of each test site, the date of the measurements, the 
number of intersecting flight lines at these positions, and the 
point density in the respective overlap area. Additionally, post-
processing of the navigational data yielded estimates of the 
GNSS/IMU positioning errors. These variables were 
determined by the POSPac MMS software as a function of 
time, which is influenced by satellite geometry, SAPOS data, 
Kalman filtering, and so forth. In Table III, separate intervals 
of the estimated position errors are specified for the north, 
east, and down (NED) direction at each test site.   

An oblique forward-looking sensor configuration was used 
in most of our experiments. Typically, the forward-looking 
angle of the sensor platform was chosen to reach about φ=45° 
while flying with the helicopter’s nose pitched down. Due to 
aviation security reasons, the minimum flight level had to be 
restricted to 2000 ft over cities (Munich and Kiel) and 1000 ft 
at sparsely populated urban regions (Ettlingen, Rendsburg, 
Abenberg, and Ruschberg). In the latter case, these boundary 
conditions led to laser strips with a width of 500 m and an 
average point-to-point distance of 0.5 m. Each test site was 
approached in a cross pattern, resulting in overlapping point 
clouds that show the underlying urban terrain from multiple 
aspects. This flight configuration is not really indispensable 
when it comes to the ability to recover the boresight angles. 
The main motivation to consider the oblique view instead of 
the nadir view was discussed in Sections I.A and I.C. The 
proposed methods are not limited to cross flight lines. 
However, enough data overlap is crucial for the calibration 
process, and sufficient variation is needed in terms of plane 
orientations and viewing directions. In case of an oblique 
forward-looking sensor, this variation is best achieved by a 
multi-intersecting flight path. As an example, the trajectory of 
the ALS system during acquisition of the “Munich (TUM) 
2006” dataset is plotted in Fig. 5a. Fig. 5b shows a rendered 
visualization of the combined point cloud emerging from pass 
1-4 in this particular case (all four directions/tiles). 
Additionally, Fig. 5c shows the width if a single strip at 
“Abenberg 2008”, and it demonstrates the very different types 

TABLE III 
TEST SITES AND DETAILS OF EXPERIMENTS 

test site coordinates WGS84 date 
mm/dd/yy aspects points 

(overlap) 
density 
[pts/m²] 

sensor position error RMS [cm] 
PPK 

north east down 
Munich (TUM) N 48° 8.94', E 11° 34.04' 10/09/06 4 3,100,000 9.7 ~400 ~400 ~800 no 
  09/02/09 4 4,400,000 5.2 1-20 1-7 1-14 yes 
Rendsburg N 54° 17.94', E 9° 41.28' 04/22/08 5 5,400,000 18.6 3-8 3-8 4-15 yes 
Ruschberg N 49° 37.18', E 7° 17.33' 09/01/09 3 4,200,000 17.7 3-10 2-7 4-13 yes 
Abenberg N 49° 14.50', E 10° 57.80' 04/18/08 4 5,400,000 16.1 2-4 2-3 3-4 yes 
  08/31/09 4 6,200,000 21.1 2-3 2-3 3-4 yes 
Kiel N 54° 19.41', E 10° 8.38' 04/23/08 6 6,600,000 9.9 3-30 3-12 4-30 yes 
Ettlingen (IOSB) N 48° 56.83', E 8° 24.65' 09/01/09 3 5,000,000 20.0 3-10 3-5 3-8 yes 
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of urban areas we are dealing with. Each 3D point in these 
figures is colored according to its associated intensity, as 
derived from full waveform analysis (echo amplitude). 
Similarly, Fig. 6a depicts a close-up view of a single point 
cloud out of the “Ruschberg 2009” measurements, overlaid 
with a wire-frame model of two buildings at this location. 
Even though the sensor positions were measured with high 
accuracy (PPK), overlapping point clouds show discrepancies 
of several meters if the boresight alignment is incorrect. This 
fact is demonstrated in Fig. 6b and 6c. The graphs show a 
comparison of 3D points in the vertical and horizontal cross 
sections of two buildings in the overlap area (Hauptstr. 31). 
The influences of boresight misalignment were quantified and 
eliminated by the methods described in Section III. 
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Fig. 5 (a) Top view of the trajectory at “Munich (TUM)” test site in 2006, (b) 
partial view of 3D laser points acquired at “Munich (TUM) 2006” (pass 1-4), 
(c) oblique view along a single strip (“Abenberg 2008”, pass 4). 
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Fig. 6.  Close-up view of the “Ruschberg 2009” data set: (a) wire-frame 
model and position of sectional planes, (b) aggregated data in a vertical cross 
section, (c) horizontal cross section. 

 
TABLE IV 

CONTRIBUTION OF SUBROUTINES TO COMPUTATIONAL EFFORT 

step in the processing chain portion of 
computation time 

Time synchronization, interpolation of 
navigational data, and direct 
georeferencing 

28 % 

Generation of k-d trees with C++ ANN 
library and MATLAB wrapper 4 % 

Ground level identification 28 % 

Local principal component analysis 11 % 

RANSAC-based segmentation of planar 
shapes 25 % 

Feature extraction and matching 2 % 

Boresight calibration 1 % 

Data-based alignment of point clouds 1 % 
 

B. Implementation details and runtime information 
Meanwhile, compact and lightweight laser scanners are 

available that provide on-line scan data (e.g., RIEGL LMS-
Q160). Because the proposed methods involve many search 
operations in 3D point clouds, it is important to use an 
efficient implementation of fast search structures to be real-
time capable. However, at the moment, we are only 
considering off-line data processing, and our implementation 
(MATLAB) is not runtime-optimized. The reported runtime 
measurements only provide an overview of the different steps 
and their contribution to the overall runtime behavior. Recent 
examples of efficient ALS data processing methods can be 
found in literature, which have demonstrated very good 
performance and real-time capability, e.g., [36]. Considering 
increasing hardware capacity and a more efficient 
implementation, we expect that our methods can be 
accomplished during the helicopter mission. Table IV lists the 
contribution of each subroutine to the computation time that 
we observed while applying our methods to the “Abenberg 
2008” data set. These data comprise APPLANIX 
geopositioning information and RIEGL laser scanner data 
originating from four flights over this urban terrain. The 
overlap area amounts to 500×500 m², and it was sampled by 
5,400,000 directly georeferenced 3D points that were acquired 
within 4×20 seconds. Due to turning maneuvers of the 
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helicopter (cf. Fig. 5a), the whole process of data acquisition 
took about 11 minutes. Using the hardware and software 
described below, data processing was performed in a total of 
28 minutes, which can be traced back to our inefficient 
implementation in MATLAB. The recorded raw data were 
preprocessed and converted to ASCII format using the sensor 
manufacturer’s software tools POSPac MMS and 
RiANALYZE, respectively. Our own processing chain started 
after these initial steps. In this example, the data were analyzed 
on a standard laptop computer with an Intel Core 2 Duo P9400 
2.4 GHz processor running MATLAB 2007a. To speed up the 
creation of the search structures, we substituted our own octree 
implementation with the C++ ANN library for efficient k-d 
tree generation [37], which makes Table IV less conclusive at 
this point. 

 
TABLE V 

PARAMETER SETTINGS USED FOR THE EXPERIMENTS 
Section parameter value 

Table II {2} radius used for local PCA 
threshold for class A 

r=3 m 
λ 1<0.01 

Table II {3} max. slope (ground level) dmax=0.25 

Table II {5} search radius 
similar normal directions 

r=3 m 
|ns·ni|>0.966 

Table II {7} min. points in S #S >7 

Table II {8} RANSAC confidence 
interval 

0.2 m 

Table II {9} min. percentage of inliers 75% 

Table II {13} search radius 
threshold for point assigned 
to plane 
matching normal directions 

r=3 m 
ε=0.25 m 
 
|n0·nk|>0.966 

Table II {15} cycles of inner loop 3 

Section 3.E search radius 
matching normal directions 
threshold (5) 
threshold (6) 

15 m 
|n0a·n0b|>0.966 
ε1=0.1 
ε2=0.05 

Section 3.F.1) RANSAC confidence 
interval 

0.4 m 

 

 
Fig. 7.  Point classification and plane segmentation for “Munich (TUM) 
2006” (pass 1). 
 

C. Results 
The proposed methods were applied to the data listed in 

Table III. Detailed parameter settings used for the experiments 
are given in Table V. Fig. 7 shows representative results of 
point classification and the segmentation of planar shapes for 
the first point cloud of the “Munich (TUM) 2006” 
measurements. Points at ground level are shown in blue, non-
coplanar points are colored green, and planar shapes are 
shown in yellow-red color according to their specific normal 
direction. 

The boresight angles (β1, β2, β3) of the ALS system were 
determined based on data of each specific proving ground. 
Table VI gives an overview of the results, as well as some 
statistics related to the number of utilized planar pairs and their 
orientation. Remarkably, cities like Kiel and Munich mainly 
showed the presence of flat roofs, whereas gable roofs were 
typically found in the small villages. Only 5% of the planar 
pairs can be ascribed to facades, which was to be expected due 
to fairly different viewing directions. The three boresight 
angles describe the misalignment of the laser scanner with 
respect to the IMU. With the sensor platform set to a nadir-
looking configuration (φ=0°), (β1, β2, β3) would correspond to 
the (heading, roll, pitch) axes of the helicopter frame, but 
because we used an oblique forward-looking sensor (and an 
IMU that was rigidly mounted to it), the angles cannot be 
interpreted this way. Analogous to Fig. 6, Fig. 8 depicts cross 
sections of two buildings in the “Ruschberg 2009” data set 
after applying the appropriate boresight correction. When 
comparing the determined boresight angles in Table VI, it has 
to be considered that the system was reassembled each year. 
Nevertheless, the results found at the “Abenberg 200x” test 
site in both 2008 and 2009 show almost consistent values of 
β1=0°, β2=0.16°, β3=0.17° with variations of only ±0.01°. In 
both cases, we had nearly optimal conditions during the 
experiments. This fact hints at boresight misalignment caused 
by a fixed deformation of the sensor platform and/or 
permanent displacement of the drill-holes used for the sensor 
installation. In this context, the significantly smaller value of 
β1 compared to β2 and β3 comes about by accident rather than 
by design. The angles arising from the “Munich (TUM) 2006” 
data set differ noticeably from all others, which can be 
ascribed to missing GNSS corrections (SAPOS) in this 
exceptional case. To evaluate the reliability of the respective 
boresight parameters, we repeated the procedure of plane 
segmentation, matching, and solving for (β1, β2, β3) several 
times for each test site. Because a large number of random 
operations are used within our approach (e.g., RANSAC and 
random seed selection for plane segmentation), the resulting 
standard deviations can act as an estimate of the confidence 
level. Additionally, in case of the “Abenberg 2009” 
measurements, we repeated the proposed procedures 250 times 
on the corrected data and found the 1σ  intervals depicted in 
Fig. 9. Remarkably, the variation of β2 appears to be 
significantly smaller than the others, a fact that is confirmed in 
Table VI. 

At the end of our workflow, remaining discrepancies are 
addressed by a data-based alignment of the corrected point 
clouds, as described in Section III.G. Obviously, this step is 
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optional in cases where the boresight correction led to 
sufficient point positioning accuracy (Fig. 8). 
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Fig. 8.  Buildings in the “Ruschberg 2009” data set after boresight adjustment 
without further registration: (a) vertical cross section, (b) horizontal cross 
section. 
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Fig. 9.  One-sigma intervals found for the boresight angles (after first 
correction). 
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Fig. 10.  Evaluation of local discrepancies (example: 4 point clouds). 
 

Additional computations are required to derive a 
quantitative measure of fitting accuracy. In the following 
evaluation, we derive such a measure from quantifiable local 
point-to-tangent plane discrepancies. First, we identify all 
points that are of class A (cf. Section III.B), including the 
ground level. For all such points, we look for the respective 
closest points in each of the other data sets. If p denotes an 
arbitrary point of class A in point cloud P, then we search for 
points qi  in the other (overlapping) point clouds Qi  (P≠Qi) 
that have minimal Euclidean distance to p: 

 
min

i
i Q∈
− = −

q
q p q p  (21) 

 
Because the local normal direction n at position p is known, 

we can estimate the particular local discrepancy to each of the 
other point clouds as the following: 

 
( ) .i id = − ⋅q p n  (22) 

 
At each occurrence of a point of class A in any of the point 

clouds we obtain min(di) and max(di), describing the 
minimum and the maximum observed local discrepancy at this 
position. An example that shows four overlapping point clouds 
is depicted in Fig. 10. To derive a global indicator of fitting 
accuracy, we inspect both the entire set of minimum local 
discrepancies and the entire set of maximum local 
discrepancies. For both sets, we derive separate median values 
(rather than separate arithmetic means, taking into account that 
the local distances di are affected by outliers due to occlusions 
and non-overlapping parts of the data sets). The bars in Fig. 11 
show the interval between these two median values. On 
average, local discrepancies of the point clouds can mainly be 
found in this interval. If this interval is broad, this indicates 
that some parts of the data are better aligned than others. The 
goal of calibration and registration is to shrink this interval and 
move it to zero. The indicators of (relative) fitting accuracy 
were determined for each test site on the basis of the 
uncorrected data, after the boresight calibration, and after the 
data-based registration. A confirmation of the absolute point 
positioning accuracy cannot be given this way because it 
would require independent reference data (control points, or 

TABLE VI 
RESULTS: IMU/LASER BORESIGHT ANGLES 

 test site number of planar pairs, 
(flat roofs / gabled roofs / facades) 

β1, (σ)  [°] β2, (σ)  [°] β3, (σ)  [°] 

Munich (TUM) 2006 218, (157 / 47 / 14) 0.0837, (0.0041) 0.0039, (0.0007) -0.1492, (0.0048) 
Munich (TUM) 2009 296, (148 / 118 / 30) -0.0132, (0.0033) 0.1762, (0.0008) 0.2102, (0.0045) 
Rendsburg 2008 249, (0 / 245 / 4) -0.0102, (0.0061) 0.1825, (0.0014) 0.1894, (0.0026) 
Ruschberg 2009 116, (16 / 92 / 8) -0.0073, (0.0041) 0.1848, (0.0010) 0.1782, (0.0019) 
Abenberg 2008 320, (46 / 261 / 13) 0.0305, (0.0050) 0.1510, (0.0013) 0.1684, (0.0036) 
Abenberg 2009 324, (42 / 253 / 29) -0.0015, (0.0011) 0.1739, (0.0003) 0.1702, (0.0007) 
Kiel 2008 670, (475 / 150 / 45) -0.0190, (0.0100) 0.1632, (0.006) 0.1891, (0.0077) 
Ettlingen (IOSB) 2009 60, (31 / 24 / 5) -0.0485, (0.0032) 0.1796, (0.0009) 0.1237, (0.0018) 
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control patches). However, except for one test site, all results 
in Fig. 11 were achieved by considering post-processed GNSS 
information in combination with several orthogonal as well as 
antiparallel flight lines. Therefore, this evaluation of the 
boresight calibration should also reflect the accuracy of 
absolute georeferencing. 
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Fig. 11.  Evaluation of ALS system calibration and data-based registration: 
bars indicating the amount of local displacements. 
 

V. DISCUSSION AND CONCLUSIONS 
In cases where multi-view and/or multi-temporal airborne 

LiDAR data are analyzed, considerable offsets occur that are 
caused by a number of potential error sources. Imperfections 
of the ALS sensor system and adverse conditions during data 
acquisition usually lead to significant discrepancies between 
overlapping laser point clouds. In the literature, this problem is 
often approached solely by data-based registration techniques 
(e.g., ICP methods), which sometimes improve the relative 
fitting accuracy, but blur the exact geographic position of the 
data sets. Additionally, data registration has no long-term 
effect on subsequent measurements. 

Most of the error sources in airborne laser scanning can be 
reduced or avoided in an independent manner, for example, 
before or while assembling the ALS system. When considering 
accurate sensor trajectories (RTK or PPK), the IMU/laser 
boresight misalignment can be found as the most important 
remaining influence on point positioning accuracy. Our 
approach towards fusion and comparison of multiple point 
clouds integrates point classification, plane segmentation, 
boresight calibration, and rigid-body alignment. The proposed 
methods were tested with (but are not limited to) data of an 
oblique forward-looking line scanner. All experiments 
described in Section IV demonstrated usability and reliability, 
even with widely differing types of urban areas. 

Remarkably, the boresight correction that was found for the 
“Munich (TUM) 2006” data set had no enhancing effect on the 
overall fitting accuracy. This observation can be explained by 
missing PPK exactness in this particular case, which led to 
dominant GNSS positioning errors of several meters that 
spoiled the calibration process. Adjusting the IMU/laser 
boresight this way is pointless without precise positioning 
accuracy. 

In all other experiments, we fell back on the existing 
SAPOS network in Germany instead of using our own GNSS 
reference stations. Although the SAPOS stations delivered 
highly precise correction data, their distance to the actual test 
site often exceeded 20 km, which decreased the PPK 
positioning accuracy. Additionally, the satellite constellation 
can be a limiting factor. These facts were confirmed by the 
results found at the “Kiel 2008” test site, where we came 
across sensor position errors up to 30 centimeters (Table III). 
Although reasonable boresight angles were found at this test 
site, the fitting accuracy could only be moderately increased 
(cf. Fig. 11). In cases of variable GNSS positioning errors, 
there is an additional chance that proper planar pairs are 
falsely removed by the RANSAC outlier rejection, which 
increases the fitting accuracy for only parts of the overlapping 
data. This effect of over-fitting can be seen in the “Ettlingen 
(IOSB) 2009” example, where only a low number of planar 
pairs were available for the corrections. If the “Abenberg 
2009” calibration parameters are applied to the “Ettlingen 
(IOSB) 2009” data instead, local discrepancies are almost 
identical to those shown in Fig. 11. This observation means 
that the fitting accuracy is quite low in this example even if a 
perfectly calibrated system is used, which hints at the presence 
of GNSS errors. However, the proposed rigid-body alignment 
method (Section III.G) is suited to attenuate relative 
discrepancies between overlapping tiles in such situations. 

All other test sites revealed reliable and reproducible 
boresight angles of the ALS system that clearly improved the 
absolute point positioning accuracy, with almost no need for 
any further registration. For instance, a maximum standard 
deviation of σ= 0.007° was encountered for the determined 
boresight angles within each of the “Abenberg 200x” data sets. 
However, when comparing these parameters between the 
different test sites, some larger variations in the boresight 
angles were found, even if the system was not reassembled 
between the measurements. Besides possible over-fitting due 
to GNSS errors, this fact hints at some additional phenomena 
that affected our data. Some possible influences can be 
assumed to be specific to our hardware. Even under optimal 
post-processing conditions, the absolute angular accuracy of 
the Applanix POS AV 410 system is specified with 0.008° for 
the roll and pitch angles, and 0.025° for the heading angle 
[35]. If the absolute orientation measured by the IMU/GNSS 
system is wrong, these angular errors are incorrectly appended 
to the boresight parameters. Other negative effects could have 
been caused by the scanning mechanism of the laser scanner, 
which had not been calibrated since 2006. After some rough 
missions and shipments of the device, an offset between the 
scanning plane and encoder plane might have occurred which 
led to effects that influence the process of boresight 
calibration. 

Nevertheless, the consistency of results in our experiments 
demonstrates that the fitting accuracy is significantly improved 
once boresight parameters are found, and the system is kept 
unchanged. The maximum and minimum local discrepancies 
shown in Fig. 11 were reduced to at least twenty percent of the 
values found for the uncalibrated system. For instance, 
remaining point offsets at “Abenberg 200x” amount to 3-8 cm. 
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These average offsets are close to the statistical scatter, which 
can be ascribed to other influences listed in Table I, but also to 
the roughness of the underlying planar objects (e.g., roofs). 
However, maximum remaining offsets were observed at the 
boundary of the laser strips, which can only be explained by 
additional phenomena such as those mentioned above. 

Once the correct boresight angles are determined, the 
associated rotation matrix RB can be used for subsequent direct 
georeferencing with respect to (2), as long as the system is not 
reassembled. According to Fig. 11, we achieved the best 
results in the case of the “Abenberg 200x” measurements. This 
can be explained three ways. First, we had nearly optimal 
GNSS/PPK conditions during these experiments, with 
estimated sensor position errors of only 3 cm (Table III). 
Second, the flight level was comparatively low at this test site, 
causing angular errors to result in smaller discrepancies. Third, 
this urban area is in fact a small village in hilly terrain, with 
many different roof shapes and varying building orientations 
(Fig. 5c). Obviously, these variations represent optimal 
boundary conditions to determine the boresight angles. This is 
particularly true if an oblique forward-looking ALS sensor is 
used (such as in our case), for which we recommend criss-
crossing flight lines as depicted in Fig. 5a. In addition to 
advantages in terms of data coverage, this multi-view 
configuration leads to a sufficiently broad distribution of 
planar pairs that is needed for an accurate boresight angle 
determination. 

After ALS system calibration and data registration, the 
results of point classification and shape segmentation are a 
useful basis for city modeling, terrain-referenced navigation, 
or on-line change detection. These topics will be part of our 
future work. 
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